Optimal Combination of Tensor Optimization Methods

Optimal Combination of Tensor Optimization Methods

Feb 3, 2020·
Dmitry Kamzolov
Dmitry Kamzolov
,
Alexander Gasnikov
,
Pavel Dvurechensky
· 0 min read
Abstract
We consider the minimization problem of a sum of a number of functions having Lipshitz p-th order derivatives with different Lipschitz constants. In this case, to accelerate optimization, we propose a general framework allowing to obtain near-optimal oracle complexity for each function in the sum separately, meaning, in particular, that the oracle for a function with lower Lipschitz constant is called a smaller number of times. As a building block, we extend the current theory of tensor methods and show how to generalize near-optimal tensor methods to work with inexact tensor step. Further, we investigate the situation when the functions in the sum have Lipschitz derivatives of a different order. For this situation, we propose a generic way to separate the oracle complexity between the parts of the sum. Our method is not optimal, which leads to an open problem of the optimal combination of oracles of a different order.
Type
Publication
In Lecture Notes in Computer Science