Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank

Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank

Aug 30, 2015·
Anton Anikin
,
Alexander Gasnikov
,
Alexander Gornov
Dmitry Kamzolov
Dmitry Kamzolov
,
Yury Maximov
,
Yurii Nesterov
· 0 min read
Abstract
Over the last two decades, the PageRank problem has received increased interest from the academic community as an efficient tool to estimate web-page importance in information retrieval. Despite numerous developments, the design of efficient optimization algorithms for the PageRank problem is still a challenge. This paper proposes three new algorithms with a linear time complexity for solving the problem over a bounded-degree graph. The idea behind them is to set up the PageRank as a convex minimization problem over a unit simplex, and then solve it using iterative methods with small iteration complexity. Our theoretical results are supported by an extensive empirical justification using real-world and simulated data.
Type
Publication
In Optimization Methods and Software